Bentuk pertanyaan matriks x yang berordo 2x2 yang memenuhi persamaan [3 4 1 2]X = [2 1 4 3] adalah . - Lihat pembahasan yang lebih lengkap di Brainlyhtt
MDMahkota D10 November 2021 0418PertanyaanNilai x yang memenuhi persamaan matriks [2 -3] [x] =[4 ] [1 4] [y] [13] adalah ... A. -3 B. 2 C. 1 D. 5 E. 6691Jawaban terverifikasiRSHalo Mahkota D, kakak bantu jawab yaa Jawaban yang benar untuk soal tersebut adalah D 5. Pembahasan ada pada gambar akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!Mau pemahaman lebih dalam untuk soal ini?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!
Selaindipakai untuk memilih invers suatu matriks, prinsip determinan juga sanggup dipakai untuk memilih penyelesaian sistem persamaan linear dengan hukum cramer. Konsep Determinan Matriks Untuk tingkat SMA, umumnya yang dipelajari yaitu determinan matriks untuk ordo 2x2 dan 3x3.
Kelas 11 SMAMatriksInvers Matriks Ordo 2x2Invers Matriks Ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0242Jika matriks A = 3 -1 11 -4, invers matriks A adalah A^...0151Invers matriks A=-6 -5 -4 3 adalah A^-1= ...0551Diketahui matriks-matriks A= 3 5 -1 -2 dan B=-...0655Diketahui matriks A=5 -3 -2 1 . Jika A^-1 adala...Teks videoHalo fans. Nah di sini ada soal Kita disuruh untuk menentukan matriks X yang berordo 2 * 2 yang memenuhi persamaan berikut ini sebelumnya perlu diingat jika terdapat bentuk B = X dikali a maka untuk x nya itu = b * a invers untuk inversnya itu sendiri jika hanya = abcd maka invers yaitu = 1 per determinan a yaitu a. Dikurang b c itu dikali a dan b nya itu ditukar kemudian b dan c nya masing-masing dikali min 1 dengan cara atau ada di kurang bikinnya itu tidak boleh sama dengan nol maka dari itu untuk penyelesaian nya di sini. Nah. Bentuk ini itu sama saja dengan b = X dikali a maka untuk menentukan X yaitu adalah B dikali a invers sehingga kita harus menentukan dulu A invers nya di sini kan kita misalkan ini a na kita identifikasi disini abcd kemudirumus invers itu 1 per a dikurang b c jadi adiknya min 3 X min 2 itu 6 kemudian dikurangi 2 * 1 itu 2 kemudian di kali yah gantiin itu ditukar jadi di sini bentuknya min dua dan n min 3 kemudian B dan C yaitu masing-masing kita kalikan dengan min 1 jadi di sini min dua dan min 1 kemudian kita operasikan dapatkan 1/4 X matriksnya lalu kita perhatikan didapatkan min 2 per 4 min 2 per 4 min 1 per 4 dan min 3 per 4 nah kita telah mendapatkan invers matrik Kemudian untuk x-nya berarti B dikali a invers b nya tadi itu adalah Min 9 10 20 dikalikan matriks invers nya yaitu a invers nya ya jadi min 2 per 4 min 2 per 4 min 1 per 4 min 3 per 4 A kemudian kita kalikan matriksnya jadi ingat dalam perkalian matriks itu berarti baris dikali kolom berarti di sinidan dikali min 2 per 4 + 10 x min seperempat kemudian Min 9 x min 2 per 4 + 10 x min 3 per 4 Lalu 2 X min 2 per 4 ditambah 0 dikali minus seperempat Lalu 2 X min 2 per 4 + 0 x min 3 per 4 jadi kita operasikan ya kita dapatkan disini 18 per 4 + 10 per 4 + 18 per 4 dikurang 30 per 4 kemudian Min 4 per 4 lalu Min 4 per 4 dari sini kita dapatkan 8 per 4 MIN 12 per 4 Min 11 hasilnya adalah 2 min 3 min 1 min 1 maka dari sini kita telah mendapatkan matriks yang berordo 2 * 2 yang memenuhi persamaan tersebut yaitu 2 min 3 min 1 min 1 maka jawaban yang tepat itu adalah bagian D sampai jumpa di selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Matriksyang memenuhi persamaan adalah Itulah tadi jawaban dari matriks x yang memenuhi persamaan, semoga membantu.. Kemudian, Buk Guru sangat menyarankan siswa sekalian untuk membaca pertanyaan selanjutnya yaitu semua elektron dalam subkulit d harus mempunyai bilangan kuantum dengan penjelasan jawaban dan pembahasan yang lengkap.
BerandaTentukan matriks X yang memenuhi persamaan berikut...PertanyaanTentukan matriks X yang memenuhi persamaan berikut X ⎠⎛ ​ − 1 5 1 ​ 3 − 2 6 ​ 0 1 3 ​ ⎠⎞ ​ = 1 2 ​ 4 − 6 ​ − 5 3 ​ Tentukan matriks yang memenuhi persamaan berikut Jawabandiperoleh X = 15 104 ​ − 5 24 ​ ​ 10 22 ​ − 10 9 ​ ​ − 5 12 ​ 30 39 ​ ​ diperoleh PembahasanDiperhatikan Ingat mengenai sifat invers matriks Apabila terdapat matriks maka invers matriks yaitu Ingat bahwa dan Diperoleh perhitungan dan Sehingga diperoleh Lebih lanjut, diperoleh X ⎠⎛ ​ − 1 5 1 ​ 3 − 2 6 ​ 0 1 3 ​ ⎠⎞ ​ = 1 2 ​ 4 − 6 ​ − 5 3 ​ ⇒ X = 1 2 ​ 4 − 6 ​ − 5 3 ​ ⎠⎛ ​ − 1 5 1 ​ 3 − 2 6 ​ 0 1 3 ​ ⎠⎞ ​ − 1 ⇒ X = 1 2 ​ 4 − 6 ​ − 5 3 ​ − 30 1 ​ ​ ​ ⎠⎛ ​ − 12 − 14 28 ​ − 9 − 3 9 ​ 3 1 − 13 ​ ⎠⎞ ​ ​ ⇒ X = − 30 1 ​ − 208 144 ​ − 66 27 ​ 72 − 39 ​ ⇒ X = 15 104 ​ − 5 24 ​ ​ 10 22 ​ − 10 9 ​ ​ − 5 12 ​ 30 39 ​ ​ Dengan demikian diperoleh X = 15 104 ​ − 5 24 ​ ​ 10 22 ​ − 10 9 ​ ​ − 5 12 ​ 30 39 ​ ​ Diperhatikan Ingat mengenai sifat invers matriks Apabila terdapat matriks maka invers matriks yaitu Ingat bahwa dan Diperoleh perhitungan dan Sehingga diperoleh Lebih lanjut, diperoleh Dengan demikian diperoleh Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!179Yuk, beri rating untuk berterima kasih pada penjawab soal!NSNovita Sari Mudah dimengerti©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
TripletPythagoras adalah kumpulan tiga buah bilangan asli, a < b < c, yang memenuhi, Sebagai contoh, 32 + 42 = 9 + 16 = 25 = 52. Dan hanya terdapat persis satu triplet Pythagoras yang bisa memenuhi a + b + c = 1000. Temukan triplet Pythagoras tersebut dan tentukanlah hasil a × b × c. Dalam persamaan berikut x, y, dan n adalah bilangan
Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika kita bertemu dengan sosok seperti ini yang harus kita ingat ialah konsep mengenai perkalian matriks dan juga invers dari suatu matriks pada soal diberikan sebuah matriks yaitu 2753 X dengan x = matriks Min 3879 nah berdasarkan rumus ini kita dapat mencari nilai x dari matriks 27 53 kita inverskan lalu kemudian kita kalikan dengan matriks Min 387 Min 9 Nah selanjutnya berdasarkan rumus invers disini maka kita dapat menghitung x = 1 per 2 x 3 dikurang 7 x 5 kita kalikan dengan adjoin dari matriks ini itu 2 dan 3 bertukar tempat 725 berubah tanda 75 kemudian kita kalikan materi tersebut dengan 3879 kita lanjutkan matriks X = 16 min 35 kemudian kita akan kalikan matriksnya yang utama dari 1 kolom 13 x min 3 min 9 min 7 * 7 Min 49 selanjutnya dari 1 dengan kolom 2 yaitu 3 * 8 24 min 7 x min 9 + 63 selanjutnya baris 2 dengan kolom 1 yaitu Min 5 x min 3 15 2 * 7 14 dan terakhir baris 2 kolom 2 yaitu 5 * 8 Min 42 kali min 9 Min 18 the lanjut matriks X = 1 Min 29 kita kalikan dengan matriks ini Min 58 87 kemudian 29 dan Min 58 durian 11/29 kita kalikan ke dalam menjadi minimal 8 dibagi Min 29 = 287 dibagi Min 29 yaitu Min 329 dibagi 29 yaitu min 1 Min 58 dibagi Min 29 yaitu 2. Nah. Berdasarkan perhitungan ini kita dapatkan hasilnya adalah a yaitu matriks X = 2 min 3 min 1 dan 2 demikian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Penyelesaiansistem persamaan linear dengan matriks. Tentukanlah nilai x dan z yang memenuhi persamaan matriks berikut ini. Tentukan nilai x, y, dan z berikut ini jika. X + y = 9. Maka nilai x yang memenuhi adalah x 1 2 dan x 2 3. Rumus statistika dan contoh soal beserta jawabannya lengkap.
MatematikaALJABAR Kelas 11 SMAMatriksKesamaan Dua MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0044Diketahui kesamaan matriks berikut. [5 a 3 b 2 c]=[5 2 3 ...0404Diketahui matriks A=a+2 1-3 b -1 -6, B=2 a b-3 -...0106Diketahui matriks 5 a 3 b 2 c=5 2 3 2 a 2 a...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoHalo kok fresh jika kita melihat soal seperti ini disini kita harus tahu jika ada matriks misalkan matriks A kalikan matriks b = c maka berlaku ini jika kita kalikan dengan a invers di depannya jadi a invers dikalikan dengan a dikalikan dengan b = c invers dikalikan Aini = M atau identitas X B nah karena di sebelah kiri kita kaitkanlah invers maka sebelah kanan juga kita lestarikan a invers seperti ini. Jadi ini = 1 matriks identitas dikalikan suatu matriks maka akan jadi mati kita sendiri Makan sini b. = a invers C seperti itu kan jika ada suatu matriks A B C D makanya jika di sini sama dengan 1 per X dikurang b * c lalu dikalikan dengan a dan b bertukar posisi a b dan c dikali min 1berarti ini kita lanjutkan makan di sini berarti min 51 min 2 x y ini ya berarti sini X Y = 2 min 51 min 2 dikalikan 34 sama dengan 1 per 2 X min 2 min 4 Min 5 kali 1 min 15 min min 5 x = 2 dan Min 24 Min 22 Min 55 min 1 x = 34 = 14 + 51 menjadi x + 5 x 4 ini berarti min 1 dikali Tan 3 + 2 x 4 = min 2 kali 3 min 6+ 23 + 2 * 48 nah sebenarnya ini nih = 6 + 20 itu adalah 14 + 8 adalah hanya bentuknya matriks gimana ini = 1 per Min 4 + 501 Min 25 min 12 x = 34 jadi jawabannya hanya yang ini saja tapi penyelesaian dari X dan Y adalah 14 dan 5 berarti ini jawabannya adalah yang c sampai jumpa di pertanyaan berikutnya
Jawab Jadi, himpunan penyelesaiannya adalah x = 4 atau x = ⅔. 2. Tentukan nilai x yang memenuhi persamaan nilai mutlak di bawah ini. |2x+1|=5 Jika |ax+b|=c dan c≥0 maka: 1. ax+b = c 2. -(ax+b)= c Maka soal di atas dapat kita jabarkan sesuai sifatnya sebagai berikut: 1) 2x+1= 5 2) -2x-1= 5 dapat ditulis: 2x+1=5 2x=4 X=2 Untuk jawaban kedua
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Tentukan matriks X yang memenuhi per-samaan-persamaan berikut! a.4 2 5 3x=10 4 13 7 3 3 -2=-4 3 -5 4Invers Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo jika melihat hal seperti ini maka cara mengerjakannya kita akan menggunakan konsep matriks ya. Jika kita punya persamaan matriks adalah a x = kita dapat mencari X dengan cara a invers dikalikan dengan B jika kita punya pasangan matriks A adalah X = B maka x adalah invers Nah kita akan menggunakan konsep invers dari matriks ya jika kita punya matriks A B C D diinfakkan Maka hasilnya adalah 1 dikurangi dengan BC lalu dikalikan dengan matriks b dan a kita tukar tempat B dan C kita kalikan dengan negatif seperti ini lalu kita juga akan menggunakan konsep perkalian matriks. Jika kita punya matriks A B C D dikalikan dengan matriks efgh Maka hasilnya ini adalah a ditambah dengan DGditambah dengan x dengan H lalu C ditambah dengan DG lalu cm ditambah dengan BH yang amat kayaknya ini adalah matriks 4 2 5 3 kita inverskan lalu dikalikan dengan 10 4 13-17 dari matriks ini adalah dengan 4 * 3 ini adalah 12 dikurangi dengan 5 dikali 2 ini adalah 10 lalu dikali dengan 3 dan 4 kita tukar tempat 5 dan kita kalikan dengan negatif kemudian dikali dengan 10 4 13 7 maka akan menjadi 1 per 2 dikalikan dengan matriks 3 * 10 adalah ditambah dengan min 2 x 13 adalah minus 26 dikali 4 adalah 12 ditambah dengan min 2 x 7 adalah Min 14 Min* 10 adalah Min 50 ditambah dengan 4 * 13 adalah 52 Min 5 dikali 4 adalah minus 20 ditambah dengan 4 * 7 adalah 28 maka X dan Y adalah 1 per 2 dikalikan dengan matriks 4 min 2 2 8 1/2 ini kita kalikan ke dalam setiap elemen pada matriks Nya maka akan menjadi 1 per 2 dikali 4 adalah 21 per 2 dikali 2 adalah 1 X min 2 adalah min 1 1/2 * 8 adalah 4 jadi matriks x nya adalah 2 1 Min 14 untuk soal yang bicaranya serupa saja matriksnya ini adalah Min 43 Min 54 dikalikan dengan matriks Min 433 min 2 yang diinvestasikan maka ini adalah Min 43 Min 54dikalikan dengan 1 dibagi dengan min 40 x min 2 adalah 8 dikurangi dengan 3 dikali 3 adalah 91 dikalikan dengan matriks Min 4 dan 2 kita tuh berempat jadinya kita kalikan dengan negatif maka ini adalah Min 43 Min 54 dikalikan dengan 1 dibagi dengan 8 dikurangi 9 adalah minta tuh ya Nah Min 1 ini kita kalikan ke dalam elemen matriks min dua min tiga min tiga min 4 maka akan menjadi dikalikan dengan 2334 ya maka hasil x nya ini adalah Min 4 dikali 2 adalah Min 8 ditambah dengan 3 dikali 3 adalah 94 kali 32 MIN 12 ditambah dengan 3 dikali 4 adalah 12 nilai dari X 2 adalah Min 10 ditambah dengan 4 * 3 adalah 12 * 3 adalah min 15 ditambah dengan 4 * 4 adalah 16maka kita dapatkan matriks nya adalah 102 1 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
27/22, 12:04 PM 1 pesan baru 3/11 Question 8 Correct Mark 1.00 out of 1.00 Question 9 Correct Mark 1.00 out of 1.00 Question 10 Correct Mark 1.00 out of 1.00 Question 11 Correct Mark 1.00 out of 1.00 Berapakah nilai n yang memenuhi persamaan p(n,2)=110 Select one: a. 15 b. 10 c. 11 d. 12 The correct answer is: 11 Berapakah nilai n yang
- Program Belajar dari Rumah kembali tayang di TVRI, Selasa, 25 Agustus 2020. Dalam tayangan hari ini, siswa SMA/SMK belajar mengenai matriks. Di akhir video pertama, ada soal yang bisa dikerjakan untuk mengasah pengetahuanmu. Simak pembahasan soal ketiga! Soal dan jawaban Tentukan matriks X pada persamaan berikut! Matriks XLangkah pertama, kalikan tiap matriks dengan bilangan di depannya. Jangan lupa ada matriks transpose. Karena tiap matriks ordonya sudah sama, tinggal dilakukan penjumlahan dan pengurangan. Terakhir, bagi hasil penjumlahan matriks dengan 2 untuk mendapatkan nilai X. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Tentukannilai a + b + x + y dari matriks-matriks berikut ini. Diketahui bahwa P = Q. Pembahasan Kesamaan dua buah matriks, terlihat bahwa. 3a = 9 → a = 3 2b = 10 → b = 5 2x = 12 → x = 6 y = 6 y = 2. Sehingga: a + b + x + y = 3 + 5 + 6 + 2 = 16. Soal No. 5 Tentukan determinan dari matriks A berikut ini. Pembahasan Menentukan determinan
PembahasanPersamaan matriks dengan adalah matriks persegi yang mempunyai invers atau , berlaku Diperoleh penyelesaiannya yaitu Matriks yang memenuhi persamaan adalah . Oleh karena itu, jawaban yang benar adalah matriks dengan adalah matriks persegi yang mempunyai invers atau , berlaku Diperoleh penyelesaiannya yaitu Matriks yang memenuhi persamaan adalah . Oleh karena itu, jawaban yang benar adalah A.
Tiaptiap persamaan di atas yaitu 24x + 16y +18 z = 3000, 18x + 12y + 9 z = 1980 dan 9x + 8y + 4 z = 1080 disebut persamaan linear. Definisi 4.1 (Persamaan Linear) Persamaan linear dalam n variabel x x x 12, , , n adalah suatu persamaan yang bisa disajikan dalam bentuk : a x a x a x b 1 1 2 2 nn dimana a a a danb 12, , , n konstanta real.
Q3h0LGy. qml141u056.pages.dev/87qml141u056.pages.dev/949qml141u056.pages.dev/311qml141u056.pages.dev/770qml141u056.pages.dev/566qml141u056.pages.dev/143qml141u056.pages.dev/684qml141u056.pages.dev/786qml141u056.pages.dev/436qml141u056.pages.dev/269qml141u056.pages.dev/870qml141u056.pages.dev/562qml141u056.pages.dev/669qml141u056.pages.dev/592qml141u056.pages.dev/268
matrik x yang memenuhi persamaan